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FREE LIMITS OF FORCING 
AND MORE ON ARONSZAJN TREES* 

BY 

S. SHELAH *t 

ABSTRACT 

We prove that the Souslin Hypothesis does not imply "every Aron. ( =  
Aronszajn) tree is special". For this end we introduce variants of the notion 
"special Aron. tree". We also introduce a limit of forcings bigger than the 
inverse limit, and prove it preserves properness and related notions not less than 
inverse limit, and the proof is easier in some respects. 

w Free limits 

1.1. DISCUSSION AND DEFINITIONS. For A a set of propositional variables, A a 

regular cardinal, then: L~ (A) is the set of propositional sentences generated by 

A, by negation and conjunction and disjunctions on sets of power < h. So 

L~,(A)= U~<,,L~(A) for Iz limit cardinal (>n0)  or oo. Let ~ ,~,0  denote 

sentences; q), q' set of sentences. 

We define (in L| tp, or q~ k ~ as usual (the rules of the finite case) and 
�9 k A~ ,  from ~ktp~ for i E 1  deduce ~ k  AiE1q~, and let Viq~=--~ A~--a q0,. 

Always F means in L~(A) even if we deal with L~ (A). 

The following is well known. 

1.2. THEOREM. The [ollowing are equivalent [or dp, q~: 

(1) 
(2) there is no model of dp U {-'-1 q~} with truth values in a complete Boolean 

algebra; 

t The result was announced in [9]. 
** The author thanks Uri Avraham for detecting many errors. 
The author would like to thank the United States--Israel Binational Science Foundation for 
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(3) if A is such that I ~1, and the power of any set on which we make con]unction 

in some 0 E �9 O {~o} is >= A, P the collapsing of A to to by finite functions then 

It-p "there is no model of �9 U {m ~o }". 

REMARK. This can be proven by a small fragment of ZFC, I think admissibil- 

ity axioms, at least when we prove only (1) r (3). Hence (by proving not (1) 

implies not (3)). 

1.3. CONCLUSION. If A is a transitive admissible set, ~, ,p ~ A then " ~  t- r  

has the same truth value in V and in A. 

1.4. DEFINITION. For given A and 0 E L~(A), let FFA(0) be {6 : 6 E L ( A ) ,  

0 j m 6} partially ordered by 6z = 62 if 0 ^ 62 F 61. 

(FF denotes free-forcing; we can identify ~0, 6 if q~ _-__ 6 --< ~0.) 
Reversing the definition of = and adding a minimal element, we get a 

Boolean algebra in which every set of < A elements has a least upper bound 

provided we identify 61, 62 when 0 F 61 - 62. 

CONVENTION. P, Q denote forcing notions, i.e., partially ordered sets with a 

minimal element 0, such that if p;~ q then there is r, p = r and r incompatible 

with q. 

1.5. DEFINITION. P ,~ Q for partial orders P, Q if (P C Q and) 
(a) for p, q E P, p, q are compatible in P if[ they are compatible in Q; and 

p=<q i n R  impliesp_-__q in Q, 

(b) every predense subset of P is a predense subset of O. 

REMARK (1). In BA terminology we would say "a complete Boolean sub- 

algebra". Everything is dual. 

(2) In fact (a) is not absolutely necessary. 

1.6. DEFINITION. For any P let O[P] be the following sentence: 

A {c---) m d  A b---~ a: a, b C P, a <= b, c ,d  ~ P, c ,d  incompatible} A A { Va~la: 

I C P a maximal set of pairwise incompatible elements}. 

1.6a. DEFINITION. Let P~ (i < 8) be ,~ -increasing, 8 an ordinal (A an infinite 

regular cardinal). Then their A -free limit (F lim~'<8 P~) is FF~ ( A,<~ 0 [Pi ]) (where 

the set of propositional variables is U,<s/ '0. 
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1.7. CLAIM. P'~ O implies O[O]kO[P], and P ~  FFA(0[P]). 

PROOF. Trivial. 

REMARK. OUT. notation may be confusing, as for conditions p, q E P, p ^ q is 

"p and q" ,  i.e., both are in the generic set; i.e., the same notation as in a BA. 

1.8. CLAIM. I f  as in Definition 1.6a, P8 is the A-free limit of P~ (i < 8) then 

P~,~ P~ for i < & 

PROOF. Let us check the conditions. 

(b) Let I _C P~ be a maximal set of pairwise incompatible elements of P,  

Suppose q~ ~Flim~<sP~ is incompatible with each a E L As tp E Flim~<,P~ by 

definition A~<, 0[P~] j "--1 q~. So by 1.2, after some forcing there is a model of q~, 

Aj<,0[P~]. But VoE1a is a conjunct of the second sentence, so in the model 

some a U I is true. So after some forcing, there is a model of q~ ^ a, Ai<, 0[Pj], 

so by 1.2 Aj<~ 0[Pj] ~ -'1 (~p ^ a), so ~0 ^ a E FF~ ( Ai<~ 0[P/]); so ~v, a are com- 

patible. 
(a) Let a, b E P~, if they are compatible in P~, for some c ~ P, a <= c, b <-_- c, and 

this clearly holds in P, by its definition. 

If they are incompatible then a --+ --1 b appears as a conjunct in O[P,] and we 

can finish. Similarly for a, b E P,, a = b in P~ implies a =< b in P,. 

w Preservation by free limit 

DEFINITION. (1) If N < (H()t), E ), [PI < A, P E N a forcing notion, q E P, then 
q is (P, N)-generic if for every predense I C P, which belongs to N, I n N is 

predense above p. 
(2) P is called proper if for every A big enough (any ;t > 2 I~'1 suffices, see [8]) 

N < (H(A), ~ ) is countable, P E N, p E N n P, then there is a (P, N)-generic 

q _-> p (in P). 

2.1. NOTATION. If P'~ Q, " Q / P  i s . . . "  is an abbreviation for: "for any 

generic set G C_P, in V[G], Q~ ={q ~ Q: q is compatible with every p E G }  

i s . . . "  

2.2. THEOREM. If  each P, (i < 8) is proper as well as Pj/P, (i < j  < 8) then 
their Nl-free limit P = F limT<'~ P~ is proper. Also P/P~ is proper. 
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REMARK. Similarly for/x-proper  by [10] terminology if we take # +-free limit. 

We can restrict ourselves to non-limit i,/. 

PROOF. Let N < (H(x), ~ ), (P~ :i < 8) ~ N, X big enough (see [10] w Let 

{h : n < to} be a list of all predense subsets of P which belong to N. We have to 

prove p A A. (  Va~N~ a ) E P  (in BA terms: is not zero) (p any member of 

PnN). 
Now assume w.l.o.g, that everything is in some countable transitive model M. 

In the true world V we can find a .  < a.+~, 8 n N = U . a . .  

Let (~ ,  : n < to) be a list of all countable (in M )  subsets of P which belongs to 

N, 

We now define by induction on n, in V, G., p. such that: 

(I) G,, C_ P,,., (3. C_ G.+~, 
(2) G. is P~.-generic for M and G. n N is (P~. n N)-generic for N, 

(3) p. ~p.+l ,  p =p0, p. E N f 3 P ,  
(4) p. is compatible (in P)  with every member of G., 

(5) p2.+~ is _-> q. for some q. E In, 
(6) either p2.+2 F A q~. or p2.+2 F --1 r. for some r, E q~.. 

The proof is trivial (provided you know about the composition forcings). 

In the end G = U . G .  gives us a model of Aj<~ 0[Ps] (by: members of G are 

true, members of Uj<~P, - G  are false). 

For r ~ P n N, r is true in the model iff p. _--- r for some n (this is proved by 

induction on the complexity of r, (see conditions (4) and (6)). In the model q. is 

true, hence Va~.n,~a is true, hence p A A . ( V ~ , . n N a )  is true there (p true as 

p0 = p) .  
So in V there is a model of Aj<~O[Pi], p AA. (Vo~, . ,~ , a )  so 

p A A . (  V , , ~ . n ~ a ) ~ P  as required. 

REMARK. Part of the proof is essentially a repetition of the completeness 

theorem for L~,~, (propositional calculus). But note that in this proof there was 

no need (as in the ones for inverse limit) to use names. Also, almost all previous 

theorems on preservation hold. 

2.3. DEFINITION. Pi, Q~ or ((P, Qj :i -< i0)) is an co:free iteration i[ (a) P~ is 

,~ -increasing, (b) P, +, = P, * Q, = {(p, q):  p ~ P,, II-~, "q ~ Q, "}, (p, q) -< (p', q') 
r p ~ p r Apr  II-p q ~ q ~; and we identify p E P, with (p, 0), (c) for limit 8, P8 is 

the Nl-free limit. [So Q~ is not defined.] 
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2.4. DEFINITION. We say that Mrfree iteration preserves a property if 

whenever each O~ (in V e,) has it, then so does P~. 

2.5. THEOREM. Properness is preserved by Nrfree iteration. 

PROOF. See 2.2; and prove by induction on a that for/3 < a, 

(*) I[ (P, :i  < io) E N < (H(A), E ), [[N[[ = N0, p ~ P~, and for every predense 

I _C P~, I E N, I n N is predense above p, then for some q E P~, for every 

predense I _C P~, I ~ N, I O N is predense above q, and every p',  p _-__ p '  E Po is 

compatible with q (and similarly if we restrict ourselves to forcing conditions 

>-r, r E N O P ) .  
The following Definition and Theorem are not really necessary for the rest of 

the paper, but will help in understanding w 

2.6. DEFINITION. P is strongly proper if for large enough )t (i.e.)t > (2JPI)+), 

P E N  <(H(A) ,  E) ,  IINll = ao,  p ~ P O N  and I, C_N predense in N A P  (but 

we do not ask L ~ N), then for some q, p < q ~ P, each L is predense above q. 

2.7. THEOREM. Strong properness is preserved by Nl-firee iteration. 

PROOF. Let (P~, Q~ : i =< io) be an Ml-free iteration. We prove by induction on 

a _-__ io that for any/3 < a : 

(*) Let (P~, Q~ : i _-__ io) E N < (H(A), E ), A > (2JPt) § II N II -- M0, C a family of M0 
predense subsets of P~ O N, closed under the operation listed below. Suppose 

/3 < a, p E P~ O N, a E N, /3 E N, q E P~, no q', q = q' E P~ is incompatible 

with p, and I C P~ A I E C f f  I predense above q. Then there is q~, p = q~ ~ P~, 

q<=q~, no q', q<=q'EP~ is incompatible with q~ and I ~ C  ~ I predense 

above q,. 

The operation under which C is closed is 

(Op 1) Opl (/, y, p) = {r : r E P ,  and either for some r* E / ,  r* => p and no r', 

r ~ r ' E  P~ is incompatible with r* or r is incompatible with p} 

for 3' ~ N, I ~ C, p ~ Pa. (Note that for p = 0 the last phrase is vacuous.) 

For a = 0. Totally trivial. 

For a = y + 1. So/3 =< y, hence y E N and by the induction hypothesis, for y 

(*) holds, so w.l.o.g./3 = y. So we want to use the hypothesis Pa = P, * Q,, Q~ is 
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strongly proper; then we use (q, r),  _r E O, a name of an appropriate element of 

O,. But as C is closed under (Op 1) this is easy. 

For a limit. Let a ,  E N ,  U a .  is a or at least [ U , a . , a ) n N = O  ( [a ' , a )  

interval of ordinals). 

We work as in 2.2 using the induction hypothesis. 

2.8. CLAIM. I[ we iterate to-proper, to ~ [orcings it does not matter 

whether we use Nl-free iteration or countable support one (in the latter we get a 

dense subset of the first). 

See [8, July]. The parallel of 2.7 for countable support was noted by 

Harrington and the author. 

By the way we note that unlike M,-c.c. forcing 

2.9. EXAMPLE. There are proper forcings P, Q such that P ,~ Q but Q / P  is 

not proper. 

PROOF. We let P0 = adding a subset r of m~ with a condition being a 

countable characteristic function. 

Let Qo~  V p~ Q0 ={ f :  D o m f  = a < m~, R a n g e / =  {0, 1}, [-'({0})is a closed 

set of ordinals included in r}. (r denotes the generic subset of m~ which Po 

produces.) 

Now Po, Po * Q0 are proper but in V ~o, Qo = Po * Qo]Po is not proper. See [8, 

Sept., w 

w Aron. trees: various ways to specialize 

We introduce variants of the notion "special Aron. tree" and prove some 

known theorems and some easy ones. See Baumgartner, Malitz and Reinhart [3] 

Baumgartner [1] and also Devlin and Shelah [4]. 

3.1. DEFINITION. (1) An m~-tree T = ([ T I, < r )  is a partially ordered set, such 

that (when no confusion arise, we write < instead of < r  and T instead of I T I): 
(a) for every x E T, {y E T:  y < x } is well-ordered, and its order type which is 

denoted by r k ( x ) =  rkr(x),  is countable, 

(b) To ={x E T : r k ( x ) = a }  is countable, # 0 ,  

(c) if rk(x)  = rk(y) is a limit ordinal then x = y r {z : z < x} = {z : z < y}, 

(d) if x E To, a </3, then for some y E Ta, x < y, in fact there are at least two 

distinct such y's. 
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If we wave (c) and (d) we call it an almost tortree; similarly for the other 

definitions. 

(2) A set B C T is a branch if it is totally ordered (hence well ordered); it is an 
a-branch if it has order type a. 

(3) An Aron. tree is an tortree with no torbranch. 

(4) An tortree is Souslin (or to~-Souslin tree) if there is no uncountable 

antichain ( =  set of pairwise incomparable elements). 

REMARK. Condition l(d) is not essential, except to make every Souslin tree 

an Aron. tree. 

3.2. DEFINITION. (1) For a set S _C to, which is unbounded, we call an to~-tree 

S-special if there is a monotonic increasing function [ from U ~ s  T~ to Q (the 

rationals), i.e., x < y ~ [ (x )< f (y ) .  
(2) A special to~-tree is an o)rspecial to,-tree (this is the classical notion). 

(3) r-special, S-r-special are defined similarly when the function is to R (the 

reals). 

(4) We say [ specializes (S-specialize, etc.) T. We can replace S by a function 

h, Dora h = to~, Range h = S, h increasing. 

3.3. DEFINITION. For a stationary set S C_ to,, we call an tortree S-st-special if 

there is a function [, D o m / =  U~s-~o) T~, and x ~ T~ ~ f ( x ) ~ a  x to (car- 

tesian product) such that x < y ~ f (x )  ~ / ( y )  when defined. If S is a set of limit 

ordinals we can assume x E T~ ~ [ ( x ) ~  a. 

3.4. CLAIM. (1) If T is S-special or S-r-special (S C_ to1 unbounded) or 
S-st-special (S C_ to1 stationary) tol-tree then T is an Aron. tree but not Souslin. 
Any torSouslin tree is an Aron. tree. 

(2) The following implications among properties of tol-tree holds (where 
$2 C S~ C_ tol, a ( i ) E S, increasing, $1 = { a ( i ) : i < to1}): 

(a) Srspecial ~ S2-special 

Srr-special ~ S2-r-special 

S, n {a(i + 1):i < tol}-special, 

(b) [or S~ stationary S~-special ~ Srst-special, 
(c) S~-st-special ~ S2-st-special, 
(d) [or C C_ to, closed unbounded $1 O C-st-special ~ Srst-special, 
(e) if (Vi) h~(i)<= h2(i), T is hrspecial then T is h2-special. 
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PROOF. Trivial: (1) for S-special S-r-special--weU known for S-st-special 

by the Fodour theorem. 

(2) Trivial - -  check. 

REMARK. By 2(d) dealing with S-st-special we can assume all members of S 

are limit, and so Range/C_ to, in the Definition. 

3.5. CLAIM. (1) T is S-special ift S C_tol is unbounded 
[: U ~ s  T~--~to, x < y  ^ rk (x )E  S ^ r k ( y ) E  S ~ [(x) # [(y). 

(2) T is to~-st-special iff T is special. 

and there is 

REMARK. See Claim 3.11. 

PROOF. (1) Well known. 

(2) The "if"  part is trivial. 

So suppose ftorst-specialize T. For every x E T, let Kx = {t E (rk(x) + 1) x to: 

for no y =< x is f (y )  = t}. We now define by induction on a < tot, go and Ax., 

(t E Kx, x E U~<~ T~) such that 

(a) g~ is a function from T<~ = U~<~ T~ to to, 

(b) x < y , x ~ T < o ,  y E T < ~  ~ g~(x) /g~(y) ,  
(c) / 3 < a  ~ g~Cg,,, 
(d) Ax., (for t E Kx, x ~ T<~) is an infinite subset of co, 

(e) for every x E T<~, t #  s E Kx ::> Ax., n Ax., = 0 ,  

(f) tEKx ,  x ~ T < ~  ~ A,~,O{g~(y):y<=x}=O, 
(g) if x < y ^ x E T<o ^ y E T<~, t E K~ O K, then A,., = A,.,. 
For a = 0, a limit - -  no problem. 

Fora + 1 - -  let x E T~ _C T<~+,, s = [(x), so by K ' s  definition for some y < x, 

s E K~. We choose g~§ E A ,  ( = A,., for every y =< z < x) and A,., = A,., if 

z < x  ^ t ~ K ,  n K ,  and g,+,IT<,=g~. 

If t E K , -  O , ~ K ,  (there are N0 such t's) we choose A,., _CAy., infinite 

pairwise disjoint and g,+,(x)~A~.,. 

Now by 3.4(1) g = U . . . .  go shows T is special. 

3.6. CLAIM. (1) Let S C_ to1 be unbounded. I[ every Aron. tree is S-special then 

every Aron. tree is special. 
(2) i[ every Aron. tree is S-r-special then every Aron. tree is special. 

PROOF. (1) Let T be an Aron. tree, S={a( i ) : i<to~} ,  a(i)  increasing. 
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Define T* (a partial order): The set of elements is {(x, y ) : x  E T, y ~ a(rkr(x)) 

and y < x  ~ a(rkr(y))<y};  the order in T* is: (x, y ) < r . ( x ' ,  y') i f x  < x '  or 

x=x' ,  y < "y'. 

Now T* is almost an Aron. tree; the only missing part is in Definition 3.1, part 

(d) (in fact there are at least two distinct such y's). We can add more elements so 

that it becomes an Aron. tree, T** and if g** S-specializes it, g : T ~ O ,  

g(x)  = g** ((x, a(rkr (x)))) specializes T. 

(2) By 3.5(1) and 3.4(2)(a). 

3.7. LEMMA. (1) (O,,) There is an r-special Amn. tree which is not special. 

(2) Moreover there is no antichain I, s.t. rk (I) = {rk (x ): x E I} contains a closed 

unbounded subset of to, 

(3) (O*,) There is an r-special Aron. tree, such that for no antichain I C T is 

rk (I) = {rk (x ) : x E 1} stationary. 

REMARK. (1) was proved by Baumgartner [2]. 

PROOF. We define by induction on a <to~ the tree (T<o,<~ F T<~) and 

f:T<~--*R, x < y  ~ f ( x ) < f ( y )  such that if / 3 < y < a ,  xET~ ,  e a real 

positive number ( > 0 ) ,  then for some y, x < y E T ,  f ( y ) < f ( x ) + e ;  and 

x E Zo+~ r f (x)  E O. 
For a = 0, a-successor of successor or a limit, no problem. 

For a + 1, a limit, we are given antichains I.~_C T<~ (n < to) (by O,, or O*,) 

and we can define T<,+~ such that 

(*) if x E T~, n < to and {y E T<~ : y < x} n I :  = ~ then for some y < x, and 

e >0 ,  f ( y ) < f ( x ) < f ( y ) + ~ ,  and there is no z, z E l : ,  y < z  E T<~, f ( y ) <  

f ( z ) < f ( y ) + e .  
Now suppose I C T is an antichain (T = U . . . .  T<~ defined in the end). Let 

C = { a  <to~: a limit, and if x E T<~, e > 0 ,  and there is y E I ,  x < y ,  f ( x ) <  

f (y )  < f (x)  + e then there is such y E T<. } be closed unbounded (note it suffices 

to consider e E {I/n: n positive natural number}). 

Now if a E C ,  IAT<~ =I:~o)E{I::n<to},  a E r k ( I )  then by (*) we get 

I n  T, = O  (if y E I ,  y E T~, by (,) {z :z < y}O I.~0)~O; let z be in it, then 

z < y both in I, but I is an antichain). 

Now by defining I~ using O,~, or O*, we get (1), (2) and (3). 

3.8. CONCLUSION. Let h be a function from to1 to to1. (~*,) There is a tree T 

which is hi-special ift {i : h(i) < h~(i)} contains a closed unbounded subset of to1 
(see Definition 3.2(4)). 
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3.9. LEMMA. Let S C o~ be stationary, (<>*.ors). There is an S-st-special tree 

which is S~-st-special iff $1 - S is not stationary ; moreover there is no antichain I, 

rk (1) - S stationary. (If  S = to~ we do not need any hypothesis, <>* is meaningless 

anyhow and this is the classical theorem on the existence of special Aron. trees of 

Aronszajn himself.) Also we can make the tree such that it is not h-special for 

any h. 

PROOF. (1) We define by induction on a < to,  (T<o, <7 r T<~), 

f :T<~- - -~a•  x E T < ~ - T o ,  r k ( x ) ~ . S ~ f ( x ) ~ r k ( x ) •  x E T o ~  

f ( x ) E { 0 } x t o = l x o j ,  r k ( x ) ~ t o ~ - S @ f ( x ) E [ r k ( x ) + l ] x t o  and x < y  

f ( x ) ~ f ( y ) ,  such that 

(a) x E To ~ I/3 x t o - { f ( y ) : y  < x } [  =No,  
(b) if x E To,/3 < y < a, {({~, n)} U A _C ((/3 + 1) • to - i f (z ) :  z < x}), A finite, 

then there is y C T ,  x < y ,  { f (z ) : z  < y } O A  = O  but ( ~ , n ) E { f ( z ) : z  <y} .  

We can demand 

(c) if a is limit, a li~ S then [{or • to - { f ( z ) :  z < x }1 < No. 
There is no special problem. 

3.10. LEMMA. (~,o,) There is a special Aron. tree T, such that for no antichain 

I C T is rk( I )  closed unbounded. (For stationary: there is necessarily: this is 

mentioned in [4] p. 25.) 

REMARZ. E.g., MA + 2 "o > N~ implies that this fails. 

PROOF. We define by induction on a, (T<~ ,<r tT<~)  f :T<,--->Q 

monotonic, so that /3 < y < a, x ~ Ta, e > 0 implies for some y ~ T ,  x < 

y ^ f ( x )  < / ( y )  < / ( x ) +  e. For limit 6 < to1 we are given an antichain I ~ C T<, 

(by O.,) and for x E To, 

either 

or  

(=iy E I ~ ) y  < x  

(3y < x)  [there is no z, y < z ~ I s, [ ( z )  < / ( x )  ~ O]. 

The checking is easy. 

3.11. LEMMA. T is {a + 1 : a < tol}-special iff T is r-special. 

l~MAm:. Proved by Baumgartner [2]. 
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PROOF. The direction ~ already appears. 

For ~ let f {a + 1 : ,x < to~}-specialize T. 

Let g : Q --~ Q, e : O --~ {1/n : n > 0 natural} be such that the intervals 

[ g ( q ) -  e(q), g(q)+ e(q)] are pairwise disjoint (possible: Let Q = {q, : n < to} 

and define by induction). 

Now define "f* :x E Ta§ ~ f*(x) = g(f(x)) 

x ETa ,  a limit =), f*(x) = sup{g(f(y)) :y  < x ,  y E Ta+,, [3 < a}. 

Now f* r-specializes T;  the only point to check is: 

x ~ To+,, a limit ~ g ( f (x ) )>sup{g ( f (y ) ) : y  < x , y  E To+~,[3 + l < a }  

which follows by g's definition (the sup is =< g( f ( x ) ) -  eft(x)) as for every y < x, 

g(f(x)) is smaller than it). 

w Independence results 

It is well known that 

4.1. CLAIM. If T is an l~l,-Souslin tree, A >NI, N < ( H ( A ) ,  E) ,  T E N ,  
x E T~, 8 = tol tq N then BT(X) = {y ~ T<8 : y < x} is generic for (T, N), i.e., for 
every I E N, I C_ T which is predense 

I n BT(x) = I n N n BT(x)~ 0 .  

4.2. DEFINITION. For an Aron. tree T, 

Q(T)  = {(h,/): h is a finite function from to, to to~; 

a < f l E D o m h  ~ a <=h(a)< fl _-< h(fl); 

f is a finite function, 

DomfC_ U T, ta) ;xETht~)~  f ( x ) E a X t o ;  
a E D o m  h 

x < y ^ x, y E Domf =), f(x)~f(y)}, 

(h,f)<-_(h',f ') if/ h C_h', fc_f ' ;  

we/et (h,f)U(h',f')=(h Uh',fUf'), (h,f)Uh'=(h Uh',f), 
(h, f) U f' = (h, / U f'). 
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4.3. DEFINITION. For an Aron. tree T and stationary set S, 

Q(T, S) = {(h,.f): (h,f)  E Q(T), and ot E (Dom h) t-) (S - {0}) implies h(a) = or}, 

order - -  as before. 

EXPLANATION. Our aim is to get a universe in which SH (Souslin Hypothesis) 

holds (i.e., there is no Souslin tree) but not every Aron. tree is special. The 

question was raised by U. Avraham, and is natural as, until now, the consistency 

of SH was proved by making every Aron. tree special; see the proof of Solovay 

and Tennenbaum [12], Martin and Solovay [7], Baumgartner, Malitz and 

Reinhart [3] without CH, and Jensen proofs in Devlin and Johnsbraten [5] with 

CH. For this aim we introduce in w various notions of specializations (each 

implying the tree is not Souslin). So the program is to make every tree special in 

some weaker than usual sense. The notion r-special which had been introduced 

by Kurepe [6] is not suitable, as if every Aron. tree is r-special then every Aron. 

tree is {t~ + 1 : t~ < tol}-special (see 3.4(a)), hence every Aron. tree is special (see 

3.6). Similarly "h-special" for any increasing h :to1---> to is not suitable by 3.6 

(see Definition 3.2(4)). 

So a natural candidate is "h-special for some h "  (i.e., for every tree there is an 

h for which it is h-special). Forcing by Q(T) does the job for T - -  we take 

generic h and [. (It would be more natural to let [ go to Q and be monotonically 

increasing, but by 3.5(2) the forcing Q(T) makes Th-special  for some h, and this 

way we have more uniformity with Definition 4.3.) So we should iterate such 

forcings, but retain some T as not special. 
A second way is to make each T S-st-special for some fixed stationary S; for 

this Q(T, S) is tailored. (Note that the f we get from a generic set of Q(T, S) has 

domain U ~ s ,  T, where $1 C S, S - $1 non-stationary.) For S = O we get the 

previ~ous case, so we shall ignore Q(T). 
This leads to a secondary problem: Can every Aron. tree be Srst-special, but 

some Aron. trees are not S2-st-special ($2 - S1 stationary of course)? We answer 

positively. 

4.4. CLAIM. For T an Aron. tree, S C to1, Q(T, S) is proper. 

PROOf. We can assume w.l.o.g. ]Tol = No. 

Let A >(2"1), N < ( H ( A ) ,  E ) ,  T,S, EN, po=(h, f)EQ(T,S)NN, and let 

8 = N N to1. 

Then pl = (h O {(8, 8)} , f ) •  Q(T, S) exemplifies what is required. 
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For checking, we really repeat the proof that the standard forcing for 

specializing an Aron. tree satisfies the N~-c.c. 

4.5. DEFINITION. We call a forcing P, (T*, S)-preserving (do you have a 

better name?), where T* is Aron. tree, iff for every A >(21~'1+",) +, 
(P, T*, S) C N < (H(A), C ), N countable, 6 =~' N N to~ ~ S, p C N N P, there is 
p~ which is preserving for (p, P, T*, S); i.e., 

(i) p <=p~CP and p < = p ' c P n N  ~ p~,p' are compatible, 

(ii) p~ is (P, N)-generic ( - generic for (P, N)), i.e., for every predense I C_ P, 

I C N, I fq N is predense above pl, 

(iii) for every x C T*, i[ 

(.) 
then 
(**) 

4.6. LEMMA. 

preserving. 

x C A ---> (3y < x) (y C A ) hold for every A C T*, A C N, 

for every P-name A, A C N II-pA C T* the following holds: 

p,l "x cA- - ,  (3y <x)y CA". 

If  T*, T are Aron. trees, S C ~Ol, then Q(T, S) is (T*, S)- 

REMARK. If T* is Souslin tree then (*) from Definition 4.5 is satisfied by 

every x C T*8 (this follows by 4.1). 

PROOF. Let N < (H(A), C ), 8 =d'N f'l ~ol ~ S, IINII = no,  iT*, T, S) C N, p = 
(ho, [o)C P fq N (as in Definition 4.5), and (remembering 8 = N N ~ol) let 

6 * = sup{/(6) + 1: f C N, f(8) an ordinal < ~1}. 

Define pl = (ho LI {(8, 6*)},f0) and .suppose x C T* and 
(*) if A C T * ,  A CN, x C A  then (:iy)(y < x  ^y  C A ) .  

Let A be a Q(T, S)-name of a subset of T*, A C N. 
We shall prove that for every p2, p,<=p2C Q(T,S) ,  for some p3, p2---- 

p3C Q(T,S) ,  and p3~xt~A o r  p211-y C A  for some y <r.x.  
Let p2 = (h2, [2), if p2 II-p "x ~ A ", then we can choose p3 = p2. Otherwise there 

is p~' C P, such that 

p2<p~ and p~'ll-p"x C A " .  

i h  ~ r  ,, o a I h  b ~b~ Letp~=~ ~,]~p, p2=p~Upb, p~=(h2, f2) ,pb=~ 2,]2) w h e r e h ~ = h ~ [ & h  b= 

h~ [[6, oJ~) (closed open interval) and 
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Note that by the definition of O(T, S): 

FACT. (1) p~EPnN,  
(2) z E Dom f~ ~ rk (z) >_- 8 *. 

Now we define (in H(A), E ) ao = Max Range h ~ (which is < 8) and we define 

a function F 

D o m F  = {y E T*:rk(y)>ao}, 

F ( y )  = Sup { a * < to1 : there is (*h~, *f~) (in O(T, S)) such that: 

(1) Min(Dom *h~) = rk(y),  

(2) * h  (rk (y ) )  = s *, 

(3) (h ~ U * h ~,/~ U *f2 b) I~-o,r.s~ "y  ~ A "} 

(so we demand also that (h~ U *hbz, f~ U *f~) is in O(T, S)). 
Now clearly F E N (as it is defined by a (first-order) formula in (H(A), E ) 

whose parameters are in N). Clearly F(y)_-__tol (for y E T*-T*~o) .  Let 

A * = { y E T * :  rk(y)>so, F(y)= to l} .  (Note that A*CT*  is a set, not a 
P-name of a set.) 

Let F* be a function from to1 to to1 defined by: 

F*(s) = Sup{F(y)  + 1: y E T*~, rk(y)  > So, y ~  A *, i.e., F (y )  < to~}. 

�9 < and clearly F * E  N (same reason). As IT~ot=no, F*:tol-- , tol ,  

/hb tb~ exemplify F ( x ) > 8  *, so By the definition of 8", F*(8)<8". But ~ 2,]2y = 

necessarily F(x)= to1. So by definition x E A *. Hence by the hypothesis (*) 

there is y < r . x ,  y C A * .  So (in H(A), hence in N)  we can define a sequence 
/ i h b ,  i r  i ,O = \~ 2 ,j2 ). < ~o~) such that 

(1)' Min(Dom h~") = rk(y),  

(2)' h~"(rk(y))>-_ so+ i, 
(3)' ~ b., ~ , b , , ~  . . . .  (h2Uh2,f2UI2") o(r.s) y C A  

U U b~ F o r / < 8 1 e t p ~ = ( h ~ U h 2 U h ~ ' ~ , f ~  f2 f2").Ifp~EO(T,S)thenby(3)'itis 
as required. 

h o Why can p~ be not in O(T, S)? The first coordinate ( 2 U he U h~") is O.K., as 
h~"EN. 

What about  the second? Note f~ U f:, f~ U[~" are O.K. as p2 E Q(T, S) and by 

(3)' above correspondingly. Hence the only danger is that there are z~ ~ Dom [~, 



Vol. 34, 1981 FREE LIMITS OF FORCING 329 

z 2 ~ D o m f ~  "~, z z<rz ,  (as f~"~N,  rkz,>=h~(6)=$ * this is the only bad 

possibility). 
But remember  (in H(A)) z E Domf~" ~ rkz >= i, so by a lemma on Aron. 

trees due to Baumgartner, Malitz and Reinhart (in their proof of MA I-"every 
Aron. tree is special") there is a sequence (i. : n < to) (i, < to,) such that 

m # n A z , ~ D o m f ~  '~=Az2eDomf~ '~-~ \ z 2 ~ z ,  " 

So again there is such a sequence in N, and all but at most IDomfg[ are O.K., 

i.e., p~ ~ O(T, S). So we finish. 

4.7. THEOREM. Let T* be a Souslin tree. Suppose P~ (a <= ao), O~ (a < aa) 

form an N,-free iteration (i.e., P~+, = P, * O,, Pa = Flim~zsP~) and for every a at 
least one of the following holds: 

(a) O~ is (in V~ ) (T*,S)-preserving, 
([3) there is an antichain I~ C_ T* (in V~) ,  S. = rk (L )={rk (x ) : x  ~ I } C  

to , -  S, and 

Q~ = Oc,.~(to - S.) = {g :for some i < to1, Dom g = i + 1, Range(g)  = {0, 1}, 

{j =< i :g( i )  = 1} is closed and is C_ to , -  S~}. 

Then P~o is (T*, S)-preserving. 

REMARK. We can amalgamate conditions (ct) and (13) but it has no use. 

PROOF. We prove by induction on a the following: 
( + ) .  Suppose f l < a ,  N < ( H ( A ) , E ) ,  [3EN, a E N ,  ( P , : i < a ) E N ,  8 = 

N n to, KS,  p E P~ AN ,  q, E Po, (Ii : i < a, L def ined)~ N and 
(i) p r l3 = q, (meaning no q', q, =< q ' E  Po is incompatible with p;  if we deal 

with complete BA, p [/3 is the projection). Moreover if p [/3 <_- p' E P, n N, then 

q,, p '  are compatible; 

(ii) q, is (Po, N)-generic (see in Definition 2.1); 
(iii) if x ~ T* and (VA C_ T*) (A E N ^ x E A ---> (::ly < x)y  E A )  then for 

every P~-name A ~ N ,  qllFp, "x E A ---~(::ly < r . x ) y  C A "  

Then there is p, E Po such that 

(i)'p,r/3 = q ;  (natural meaning) and p <-_ p' E P~ AN ,  q, <= q' E P~ ; q', p' I i3 
compatible implies p ' ,p , ,q '  are compatible ( =  has an upper bound), 

(ii)' p, is (Po, N)-generic, 

(iii)' the parallel of (iii) with /3 ~ a, q, ~ p,. 
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a = 0. Trivial. 
a + 1. By the similarity between the assumptions on ql and the conclusion on 

pl, we can assume w.l.o.g. /3 = a .  Let G C P ,  be generic q~EG.  Then 

N[G] < (H(A)[G],  E ) (see e.g. [8]). 

Now in V[G] (hence in H(A)[G])  we can find pl >= p(a), (N[G],  Q~)-generic, 

as in Definition 4.5. Why? We have two cases (a)  and (/3) from the theorem: 

(a)  Straightforward, by 4.6. 

(/3) By the choice of T* (Souslin) by Claim 4.1, x E A  E N  and x E T~ ~1 

(3y < x)y ~ A. So by the assumption on qt for every A ~ V[G], A C_ T*, 
A E N[G], of course there is a P~-name A_ so q~lFpo "x E A--->(::ly < x ) y  E 

A " ,  hence in V[G], x E A  O T~ ~ (3y < x)y ~ A .  
In particular we can take A = L, E N[G] (remember I~ E V'-  . . .  ). So clearly 

if x E T~ O I~ then x E A implies I~ is not an antichain, contradiction. So 
T* O I~ = O, so 8 ~  $~ = rk(I,,), and then the desired conclusion is immediate 

(remember Q~'s definition). 

So we have p~ as required, p~ is in V"% so in V we have a P~-name p~ for it, 

and let p~=(ql, p~)~P~*Q~ which by the usual thing for composition of 

forcing, is as required. 

ot limit. Let a ON--- U . a . , / 3  = a l <  " . .  < a .  < a . + l <  " . ' ;  a .  E N .  
We define by induction on n < ~o, n > 1, q. ~ P~., q.+~ lot. = q., each q. 

satisfies the hypothesis of the theorem with or. replacing/3. 
For A a P~-name of a subset of T*, A E N, r ~ P~ n N, let 

A [or., r] = {y E T* : if r is compatible with every element of G~. 
( = the generic set of P~. ) then for some r', r < r' E P~, 

r' compatible with every element of G~. and 

r' IFp. "y  ~ A "} 

(we could have used P~/P.. ). 
Let (A., x. ): n < oJ) be a list of all pairs (A, x), A a P~-name of a subset of T*, 

x E T8 and A, x are in N;  (I. : n < ~o) be a list of all predense subsets of P~ 

which belong to N. Let 

Aq , ^A ( . ,  A r)^  A [ V { p E P , , O N : p I I - y E A .  f o r s o m e y < r . x , } v  p l = p ^  
n r n ] n < t o  

v V {q, ^ A r : J C N O P~, J is definable in (N, {y : y < x }) and 
r E J  

q. ^ A rife. "x,  ~ A , " } .  
r E . /  

There are two facts on pl we have to prove: 
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�9 M I ~ (A) pl E P~ = F hm,<~ P, i.e., A,<~ 0[P~] J pl (as clearly p, has the right form), 

(B) (i)', (if)', (iii)' hold. 

For proving both facts we do the following. We assume everything is in some 

countable transitive model M (or M ~  V, V ~  V*, in V* IH(A)Vl is 

countable which is easy by forcing). 

Let p', q' be as in (i)'. 

We let Goo C P-o = Po be generic (i.e., M-generic and p' [/3', q' E G~o). 
We shall find G _C Pa. such that G n P~. is generic (for M, P~. ), and the truth 

values it gives to all p E U.<~ Pa. make p~ ^ p' true (so we have, in V, a model of 

A~<~0[P~] F--ap~ Ap' (= fac t  (A)). 

As for fact (B), fact (B)(ii)' holds trivially by the definition of pl (i.e., 

A.( V,EI r)). Similarly the last conjunct takes care of (B)(iii)'. 

The second phrase of (B) (i)' holds by the free choice of p', q' (and the way G~o, 
G are chosen), hence p~ [ 13 = qt; the other inequality follows by p~'s definition. 

We define by induction G,, p, s.t. (like 2.2) 

(1) (3, C_ P~., G. _C G.+~, 
(2) G. is P, -generic for M, 
(3) p. _-__p.+l, p =p ' ,  p. EP~ AN, 

(4) p. is compatible (in P~) with every member of G., q. ~ G., 

(5) p3.+~ is =>q" for some q'EI .  AN, 
(6) p3.+2 F A t~. o r  p3.+2 F "'l r. for some r. E ~., where (~.  : n < to) is a list of 

all countable �9 C P, �9 ~ N, 
(7) in M[G.]  for every A E N[G.],  A C T*, x E T*, A x E A ~ (=ly < x) 

holds (q. E (3. do the job), 
(8) p3.§ "(::ly <x,)y~ E A . "  or q3.+3^ A,E~rlb"x~_A.", for some J -  

{p3.+3} C G.+~, J definable in (N,{y :y <r.x.}). 
As in the proof of 2.2, this suffices. The only non-trivial part in the definition is 

taking care of (8). So let n = 3k + 2, p., G., be defined, and we shall define p.§ 

G.+~. We define 

A ~, = {y E T*: there is r E P~, r -> p., which is compatible with every member 

of Q.+~ ( = the name of the generic subset of P~.+,) such that r IFe. "y g A k "}. 

Clearly A~, is a P..+,-name (as we use G.+~ in the definition) and if p.+l r a.+~ =< 

r E P~,.+, then 

(*) r Ik'p.. +, "y ~ A_ ~" implies r It--p~. +, "y t/~ Ak_ ". 

However the inverse implication does not follow. Now i[ we can choose p.+,, 
such that p. _-< p.+, E P~ O N, p.+x compatible with every member of (3. (equival- 
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ently of G. A N )  such that pn+,lI-p. "y  ~ A ~ "  for some y < r .x . ,  then we can 
proceed to define G.+, with no problem. 

We assume that there is no such it).+, and let p.+, = p.. Let 

J = { p . } U { - n r : r ~ P ~ . + , , r l F p ~ . §  E A;,"  for some y <r.xk}. 

Clearly J is definable in (N, {y :y  < r .  XE}), J C P~ f3 N, so it is enough to prove 

q.+~ A A,~s r IF,,. '"x~ ~ A k ". 

Now A ~ is a P..+,-name of a subset of T*, so by the choice of q.+~ 

q.+, H-e..§ "x,  E A f,---~ (::ly < r .  xk)y E A ~,". 

However  for each y < , .  x,, 

Ir ={r~P~ . . , : r l h .o+ , "y  E A ~ , " o r  y II-p..+ "y  fi~ A~,"} 

is a subset of P~.., hence Iy f3 N is predense above q,+~ (in Pa.+,) (as y E N).  So 

q,+~ forces that if y E A ~(y < r .  Xk ) then some r E Iy f3 N is in the generic subset 

of P~.+,. Hence q,+~ ̂  pn E P~ forces that: if xk E A k, then necessarily x~ ~ A~ 

(see (*)) hence some y <r .xk  is in A~,. Hence some r E Iy tq N for which 

r IFp. +, "y  E A i "  is in the generic set, clearly -1 r ~ J. So clearly (as it), E J)  

q,+lA A,~sr forces that xk EAk  leads to a contradiction (as r and x are 

incompatible) so it forces XE E A k. 

As we have assumed there is no p,+~, it), _--- p,+~ ~ P~ f3 N, p,+l compatible with 
every member  of G, such that p,+~ II-p.."y E A k" for some y < r .  xk, clearly if 

G.+~ C P~.+,, generic for M, G. C G.+~, q.+~, p. [ a.+~ E G. then r E J ~ r E G.+~. 

So finish proving (8) hence the theorem. 

4.8. CONCLUSION. If ZFC is consistent so is: Z F C + e v e r y  Aron. tree is 

S-st-special, but some Aron. tree T* is not S*-st-special for any S'C_ to1- S 

stationary (S is co-stationary - -  otherwise it is not interesting, but there is no 

other restriction). 

PROOF. Trivial by the previous Theorem 4.6, 4.7, but note that for ensuring 

T* remains an Aron. tree we had better start the iterated forcing by Q(T* ,  S), 

as for the N2-chain condition, see [8]. Remember  also that our forcings are 

proper and proper forcing preserves stationarity of subsets of to1 (see [8]). 

CONCLUDING REMARKS. (1) We can ask: can we do it with G.C.H. and can we 

get independence of other variants of "every Aron. tree is non-Souslin, special, 
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etc." but we have not tried. For G.C.H. it is natural to use a variant of the forcing 

used in [8] for the consistency of G.C.H. + SH with ZFC. 

(2) By the definition of the forcing Q(T, S); and by 3.5(2) (applied to an almost 

subtree), in 4.8 we get that every Aron. tree is S'-special for some S'  (the range 

of the generic h); So for S empty, we get: every Aron. tree is S'-special for some 

S' (equivalently h-special for some h :toa---)tol) but some tree is not S*-st- 
special for any stationary S * C  to1. 

(3) If we use also case (/3) in 4.7, we can strengthen the conclusion of 4.8 to: for 

no antichain I C T* is rk ( I ) -S  stationary (by adding a closed unbounded 

subset of to1 disjoint to any such rk(I)-S).  
(4) Avraham noted that " T  is h-special for some h "  is equivalent to " T  is 

S-r-special for some closed unbounded S C to~". Note that we can define 
S-P-special for every partial order P, and if a, E P (i < to~) implies (=li < j < tOl) 

a, =<at then " T  S-P-special" implies "T is not Souslin". Note also that 

"S-r-special for some closed unbounded S"  implies to~-RxQ-special [R m 

reals, Q - -  rationals, the order - -  lexicographic). So we have proved, e.g., "every 

Aron. tree is tol-R x Q special" does not imply "every Aron. tree is special". 

(5) We can also try to get a model of ZFC where, e.g., (1) (for some stationary 

co-stationary S _C a~l) every Aron. tree is S-st-special, but some Aron. tree T* is 

not h-special for any S; or (2) there is no Souslin tree but some Aron. tree is not 

h-special for any h. For (1) it is natural to define Q(T,S)={(h,f): 
(h,f) E Q(T, S), D o m f  C U h ~ j ~  T~}. But T is the union of No disjoint copies of 

T*, so Q(T, S) makes T* h-special for some S. 
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